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A Heuristic Study on Kansai Marshall Probe

Hiroshi Nishihara* Takeshi Nishimura*

1 Introduction

The eddy-current probe for detecting defects in the

steam generator tube is placed inside the tube as

shown in Fig.1. 

Several years ago, the late Lord Marshall of Goring

made a proposal to The Kansai Electric Power

Company to develop a new type of eddy-current probe

now known as “Kansai Marshall Probe (KM Probe)”

which can effectively detect circumferential defects of

the tube. He also suggested the concept for the new

probe. The probe consists of several “E”-shaped

ferrite cores (piece blocks), a pair of exciting coils

and built-in detecting coils. The exciting coils induce

a high-frequency primary field in the tube. Defects in

the tube perturb this field creating a secondary field

which the detecting coils pick up. 

The prototype of the KM probe is shown in Fig.2.

The cores are arranged radially around the tube axis

so that all the core legs directly face the tube wall.

One of the two exciting coils is wound to form a hoop

in the space between the upper and middle legs, while

the other is placed in between the lower and middle

legs. Each of the detecting coils is wound around the

respective middle leg.

Mr.Yamaguchi(Senior Researcher) has been trying

to optimize the design of the probe by means of

electromagnetic field computer analyses. Exper-

imental study is also being conducted.

Lord Marshall also suggested that an analytical

solution to the problem was necessary before a patent

application could be made. He had been working, to

the end of his life, on deriving a theoretical solution.

A theoretical study is also being conducted by the

INSS following his suggestion. The latter is described

in this paper.

2 First principle of the Kansai
Marshall probe

To enable the KM probe to detect circumferential

defects, the primary electric field has an axial

component Ez
prim. Since the axial eddy current due to

Ez
prim is blocked by the circumferential defect, the

secondary electric field induced by the defect must

have an axial component just opposite to Ez
prim ; i.e.

Ez
sec ＝－Ez

prim. Now, if this secondary electric field is

accompanied by the radial component of magnetic

field Hr
sec (condition 1), then the secondary field due

to circumferential defect is detectable. This is because

the radial magnetic field penetrates through the

boundary surface to enter the probe space.

Similarly, the axial defect is detectable if the

tube (conductor)

probeair
air

Fig. 1 Steam Generator Tube and ECT Probe
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primary electric field's circumferential component

Eθ
*prim is accompanied by the radial magnetic

component Hr
*sec (condition 2).

In the present study, the two derived conditions

described above are assumed to be the first principle

of the KM probe.

We began the heuristic study on this principle of

the KM probe with the following Maxwell's

equations:

which hold in all of the regions of Fig.1 excluding the

probe region. In the probe region, where there are

ferrite cores, exciting coils and detecting coils, it is

hard to write down Maxwell's equations. Let the probe

be surrounded by a hypothetical closed surface as

shown in Fig.1. The probe produces an electro-

magnetic field in the whole space outside the probe-

space through the boundary conditions (the continuity

of the field components) at its surface; therefore the

role of the probe is to produce the primary field at this

boundary surface. The present heuristic study is based

on both the uniqueness of solution in electrodynamics

and on the completeness of series expansion in terms

of a set of orthogonal functions.

It is assumed that the electromagnetic field depends

on time in the form eiωt. Accordingly, the partial

differentiation with respect to time is replaced with

factor iω.

3 Potential functions

3.1 Vector potential A
→

for magnetic
field

According to Eq.(4), the magnetic field is

expressed in terms of the vector potential A
→

, which is

defined by

Substituting Eq.(5) into Eq.(1) and introducing the

associated scalar potential φ, we obtained the

following expression for the electric field:

Assuming the Lorentz gauge:

it follows that the potential functions A
→

and φ
respectively satisfy the following equations:

●�

●�

●�

●�

●�

●�

●�

Exciting coil

Main ferrite coreSteam Generator
tube 

Ferrite core
Exciting coil

Detecting coil

Ferrite core
with Exciting coil

General View of Probe Ferrite core
without Exciting coil

Ferrite core for detection

Fig. 2 Kansai Marchall Probe (Courtesy of Mr. Yamaguchi)

∇ × E = − iω µH ,

∇ × H = (σ + iω ε)E ,

∇ ⋅ E = 0,

∇ ⋅ H = 0.

µH = ∇ × A.

E = − iω A − ∇φ .

∇ ⋅ A + µ(σ + iω ε)φ = 0,

(1)

(2)

(3)

(4)

(5)

(6)

(7)
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3.2 Vector potential A*
→

for electric
field

If we pay attention to Eq.(3), instead of Eq.(4),

then we can express the electric field in terms of the

vector potential A*
→

. That is

In this case, the magnetic field is expressed in terms

of the vector potential and the associated scalar

potential φ*;

If we let the Lorentz gauge be

then the equations for the potential functions become

We can use either sets (A
→

, φ) or (A*→, φ*), because

these sets are complete by themselves. However, if we

impose an additional condition (constraint) on the

potential functions, then the set becomes incomplete

and we need to use a superposition of the two sets as

will be described later.

3.3 Potential functions in Cylindrical
coordinates

In cylindrical coordinates r, θ , z, the axial

component Az of the vector potential is independent of

the other components Ar and Aθ. Similarly Az
* is free

from the other components Ar
* and Aθ

* . Therefore, we

assume that

and that

According to experiences in the field of engineering

electro-dynamics, with a combination of these two

types of potential functions, we can describe what we

are particularly interested in.

4 Fourier-Bessel expression

4.1 (A
→

, φ) field

The potential functions are assumed to be

expressed by the Fourier transform:

With respect to the coordinate θ the potentials are

expanded into the Fourier series:

Then the differential operators ∂r―
∂ , ∂θ―

∂ , and ∂z―
∂ are

replaced by dr―
d , in, and -ik, respectively. For simplicity,

let the total differentiation with respect to the radial

coordinate r be represented by “′”. Thus the equations

(8) and (9) for determining the potential functions of

(A
→

, φ) field become

Eq.(21) is the Bessel's differential equation, its

solution being the cylindrical function Zn(βr).

Accordingly Eq.(20) is a Fourier-Bessel series. Here-

after, we deal with the general term (the n-th term) of

the series: The general term of Az is written as

AnZn(βr). We use the following accustomed notation:

∇ × ∇ × A − ∇(∇ ⋅ A)
+ iω µ (σ + iωε)A = 0,

∇ 2φ − iω µ (σ + iω ε)φ = 0.

E * = ∇ × A *.

H * = (σ + iωε)A * − ∇φ *.

∇ ⋅ A * − iωµφ * = 0,

∇ × ∇ × A * − ∇(∇ ⋅ A *)

+ iωµ(σ + iωε)A * = 0,
∇ 2φ * − iωµ(σ + iωε)φ * = 0.

A z ≠ 0,
A r = A θ = 0,

Az
* ≠ 0,

Ar
* = A θ

* = 0.

F(r,θ ,z) = 1
2π e− ik zF(r,θ ,k)dk.

− ∞

∞

F(r,θ ,z) = F(r,n,k)einθ.Σ
n = 0

1,2,..

Az
′′ + 1

r Az
′ + (β 2 − n 2

r 2 )A z = 0,

β 2 = − k 2 − iωµ(σ + iωε),

φ = ik
µ(σ + iωε)

A z.

Z n
′ ≡ dZ n(βr)

d(βr)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)
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Now the general terms of the Fourier-Bessel

expansion of the (A
→

, φ) field are given as follows:

4.2 (A*
→

, φ*) field

The equations for the vector potential A*→ and for the

scalar potential φ* are as follows:

The corresponding general terms of the

electromagnetic field become

5 Harmonic field

Let Ro and Ri be, respectively, the outer and inner

radii of the tube. For both Ro < r and r < Ri the space

is nonconductive, while in the region Ri < r < Ro the

space is conductive.

5.1 Non-conductive space

Since σ = 0 in the non-conductive region,

Therefore, the general terms of the (A
→

, φ) field

become

Similarly the general terms of the (A*→, φ*) field are

5.2 Conductive region — inside the
tube wall

Inside the metallic tube wall, the displacement

current term iωε can be neglected compared with the

conduction term σ.  Then,

The general terms of the (A
→

, φ) field become as

follows:

E rn = − φ ′ = − ikβ
µ(σ + iωε)

A nZ n
′ (βr),

E θn = − in
r φ

= nk
µ(σ + iωε)r

A nZ n(βr),

E zn = − iω A z + ikφ

= − (iω + k 2

µ(σ + iωε)
)A nZ n(βr).

H rn = i n
µr A nZ n(βr),

H θn = − β
µ A nZ n

′ (βr),

H zn = 0.

Az
*′′ + 1

r Az
*′ + (β 2 − n 2

r 2 )Az
* = 0,

φ * = − k
ωµ Az

*.

E rn
* = in

r An
*Z n(βr),

E θn
* = − β An

*Z n
′ (βr),

E zn
* = 0,

H rn
* = − φ *′ = βk

ωµ An
*Z n

′ (βr),

H θn
* = − in

r φ * = ink
ωµr An

*Z n(βr),

H zn
* = (σ + iωε)An

* + ikφ *

= (σ + iωε− ik 2

ωµ )An
*Z n(βr).

β vac
2 = − k 2 + ω 2µε .

E rn = − φ ′ = − kβ vac
µωε A nZ n

′ (β vacr),

E θn = − in
r φ = nk

iµωεr A nZ n(β vacr),

E zn = − iω A z + ikφ

= − i(ω − k 2

µωε )A nZ n(β vacr).

H rn = in
µr A nZ n(β vacr),

H θn = − β vac
µ A nZ n

′ (β vacr),

H zn = 0.

E rn
* = in

r An
*Z n(β vacr),

E θn
* = − β vacAn

*Z n
′ (β vacr),

E zn
* = 0,

H rn
* = − φ *′ = β vack

ωµ An
* Z n

′ (β vacr),

H θn
* = − in

r φ * = ink
ωµr An

*Z n(β vacr),

H zn
* = iωε An

* + ikφ *

= i(ωε − k 2

ωµ )An
*Z n(β vacr).

β met
2 = − k 2 − iωµσ .

E rn = − φ ′ = − i k β met
µσ A nZ n

′ (β metr),

E θn = − in
r φ = n k

µσr A nZ n(β metr),

(25a)

(25b)

(25c)

(25d)

(25e)

(25f)

(29)

(30a)

(30b)

(30c)

(30d)

(30e)

(30f)

(31a)

(31b)

(31c)

(31d)

(31e)

(31f)

(32)

(33a)

(33b)

(28a)

(28b)

(28c)

(28d)

(28e)

(28f)

(26)

(27)
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Similarly the (A*→, φ*) field components are

6 Heuristic study and conclusion

The (A
→

, φ) type electromagnetic field satisfies both

conditions 1 and 2 simultaneously, if n ≠ 0. In the case

that n = 0, the radial component of magnetic field Hr
sec

is missed. Thus it is necessary to break the cylindrical

symmetry around the tube axis by being equipped

with several ferrite cores, as shown in Fig.2. Now we

will examine the ratio of Eθ to Ez:

We assume a set of typical values:

diameter of the probe ≈ 18mm

height of the probe ≈ 10mm

electric conductivity of inconel ≈ 1 × 106 mho/m 

Fourier transform variable k ≈ 1 (see Appendix)

frequency of exciting current ≈ 400kHz

The ratio is as small as  4n × 10-3, therefore the

axial component of the electric field is dominant.

On the other hand, the (A*→, φ*) type electromagnetic

field satisfies condition 2. Consequently this type of

electromagnetic field can detect axial defects in the

tube wall.

As described above, the general terms of Fourier-

Bessel expansion of cylindrical electromagnetic field

automatically satisfy the first principle of the KM

probe, which was first proposed by the Lord Marshall

of Goring, provided that the (A
→

, φ) type and (A*→, φ*)

type are simultaneously excited.

Further study of the eddy current probe, e.g.

optimization of the design, belongs to computational

physics and we must rely upon computer simulation.

Appendix

For the purpose of acquiring a concept of

representative value of the variable k, let us compare a

Lorentzian curve

with its Fourier transform

It is easy to see that the half-width of the Lorentzian

curve is “a” while the half-breadth of the Fourier

transform is approximately equal to the reciprocal

“1/a”. Consequently, it is natural to assume the

representative value of k is the reciprocal of the length

of the probe.

E zn = − iω A z + i kφ

= − (iω + k 2

µσ )A nZ n(β metr),

H rn = i n
µr A nZ n(β metr),

H θn = − β met
µ A nZ n

′ (β metr),

H zn = 0.

E rn
* = i n

r An
*Z n(β metr),

E θn
* = − β metAn

*Z n
′ (β metr),

E zn
* = 0,

H rn
* = − φ *′ = β metk

ωµ An
*Z n

′ (β metr),

H θn
* = − in

r φ * = i n k
ωµr An

*Z n(β metr),

H zn
* = σ Az

* + i kφ *

= (σ − i k 2

ωµ )An
*Z n(β metr).

E θ

E z
= nk

iωµσ + k 2 r
.

f (z) = a 2

z 2 + a 2

F(k) = ae− a k .

(33c)

(33d)

(33e)

(33f)

(34a)

(34b)

(34c)

(34d)

(34e)

(34f)

(35)

(36)

(37)


